Cisco Icons and Symbols

Data Networks

Sharing data through the use of floppy disks is not an efficient or cost-effective manner.

Businesses needed a solution that would successfully address the following three problems:

- How to avoid duplication of equipment and resources How to communicate efficiently
How to set up and manage a network
Businesses realized that networking technology could increase productivity while saving money.

Networking Devices

Equipment that connects directly to a network segment is referred to as a device.

These devices are broken up into two classifications.

- End-user devices
- Network devices

End-user devices include computers, printers, scanners, and other devices that provide services directly to the user.

Network devices include all the devices that connect the enduser devices together to allow them to communicate.

Network Interface Card

A network interface card (NIC) is a printed circuit board that provides network communication capabilities to and from a personal computer. Also called a LAN adapter.

Hub

Connects a group of Hosts

Switch

Router

- Routers are used to connect networks together
- Route packets of data from one network to another
-Cisco became the de facto standard of routers because of their highquality router products
\square Routers, by default, break up a broadcast domain

Network Topologies

Network topology defines the structure of the network.
One part of the topology definition is the physical topology, which is the actual layout of the wire or media.

The other part is the logical topology, which defines how the media is accessed by the hosts for sending data.

Bus Topology

DA bus topology uses a single backbone cable that is terminated at both ends.

DAll the hosts connect directly to this backbone.

Bus
 Topology

Ring Topology

DA ring topology connects one host to the next and the last host to the first.
-This creates a physical ring of cable.

Ring Topology

Star Topology

\square A star topology connects all cables to a central point of concentration.

Star Topology

Extended Star Topology

-An extended star topology links individual stars together by connecting the hubs and/or switches.This topology can extend the scope and coverage of the network.

Extended Star Topology

Mesh Topology

पA mesh topology is implemented to provide as much protection as possible from interruption of service. -Each host has its own connections to all other hosts. \square Although the Internet has multiple paths to any one location, it does not adopt the full mesh topology.

Mesh Topology

Physical and Logical Topology

Media Type	Plysical Topology	Logical Topology
Ethernet	Bus, Star, of Pointito-Point	Bus
FOO\|	Fing	Fing
Token Ring	Sitar	Fing

-One early solution was the creation of local-area network (LAN) standards which provided an open set of guidelines for creating network hardware and software, making equipment from different companies compatible.

DWhat was needed was a way for information to move efficiently and quickly, not only within a company, but also from one business to another.

DThe solution was the creation of metropolitan-area networks (MANs) and wide-area networks (WANs).

LANs

LANS are designed to:

- Operate within a limited geographic area
- Allow multi-access to high-bandwidth media
- Control the network privately under local administration
- Provide full-time connectivity to local services
- Connect physically adjacent devices

Using:

Router

Bridge

Hub

Ethernet Switch

Repeater

WANs

WANS are designed to:

- Operate over a large geographical area
- Allow access over serial interfaces operating at lower speeds
- Provide full-time and part-time connectivity
- Connect devices separated over wide, even global areas

Using:

Router

Communication
Server

Modem CSU/DSU
TA/NT1

Virtual Private Network

A VPN is a private network that is constructed within a public network infrastructure such as the global Internet. Using VPN, a telecommuter can access the network of the company headquarters through the Internet by building a secure tunnel between the telecommuter's PC and a VPN router in the headquarters.

Bandwidth

Why bandwidth is important:

- Bandwidth is limited by physics and technology
- Bandwidth is not free
- Bandwidth requirements are growing at a rapid rate
- Bandwidth is critical to network performance

Bandwidth is like the number of lanes on a highway.

Measuring Bandwidth

Unit of Bandwidh Abtrevialion Equivalance

Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	$1 \mathrm{kpps}=-1,000 \mathrm{bps}=10^{3} \mathrm{bps}$
Megabits per second	Mbps	$1 \mathrm{Mbpss}=\sim 1,000,000 \mathrm{bps}=10^{6} \mathrm{bps}$
Gigabits per secoond	Gops	1 Gops $=\sim 1,000,000,000 \mathrm{bps}=109 \mathrm{bps}$
Terabis per second	Tbps	$1 \mathrm{Tbps}=\sim 1,000,000,000,000 \mathrm{bpss}=10^{12} \mathrm{bps}$

Internetworking Devices

What Are The Components Of A Network?

Home Office

Branch Office
Main Office

Network Structure $\&$ Hierarchy

Institute of Electrical and Electronics Engineers (IEE5) 802 Standards

- IEEE 802.1: Standards related to network management.
\square IEEE 802.2: General standard for the data link layer in the OSI Reference Model. The IEEE divides this layer into two sublayers -the logical link control (LLC) layer and the media access control (MAC) layer.
- IEEE 802.3: Defines the MAC layer for bus networks that use CSMA/CD. This is the basis of the Ethernet standard.
\square IEEE 802.4: Defines the MAC layer for bus networks that use a token-passing mechanism (token bus networks).

I IEEE 802.5: Defines the MAC layer for token-ring networks.
I IEEE 802.6: Standard for Metropolitan Area Networks (MANs)

Why do we need the OSI Model?

\square To address the problem of networks increasing in size and in number, the International Organization for Standardization (ISO) researched many network schemes and recognized that there was a need to create a network model
-This would help network builders implement networks that could communicate and work together
-ISO therefore, released the OSI reference model in 1984.

Don't Get Confused.

ISO - International Organization for Standardization
OSI - Open System Interconnection
IOS - Internetwork Operating System
To avoid confusion, some people say "International Standard Organization."

The OSI Reference Model

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

The OSI Model will be used throughout your entire networking career!

Memorize it!

OST Model

Layer 7 - The Application Layer

7 Application

6 Presentation

5 Session

4 Transport
3 Network
2 Data Link
1 Physical
Each of the layers have Protocol Data Unit (PDU)

Layer 6 - The Presentation Layer

7 Application

6 Presentation

5 Session

4 Transport
3 Network
2 Data Link
1 Physical

This layer is responsible for presenting the data in the required format which may include:
-Code Formatting
DEncryption
-Compression
PDU - Formatted Data

Layer 5 - The Session Layer

7 Application

6 Presentation

5 Session

4 Transport
3 Network
2 Data Link
1 Physical
-This layer establishes, manages, and terminates sessions between two communicating hosts.
-Creates Virtual Circuit
aCoordinates communication between systems -Organize their communication by offering three different modes
\square Simplex
-Half Duplex
DFull Duplex

Example:

- Client Software (Used for logging in)

PDU - Formatted Data

Half Duplex

- It uses only one wire pair with a digital signal running in both directions on the wire.
- It also uses the CSMA/CD protocol to help prevent collisions and to permit retransmitting if a collision does occur.
- If a hub is attached to a switch, it must operate in halfduplex mode because the end stations must be able to detect collisions.
- Half-duplex Ethernet-typically 10BaseT-is only about 30 to 40 percent efficient because a large 10BaseT network will usually only give you 3 to 4 Mbps -at most.

Full Duplex

In a network that uses twisted-pair cabling, one pair is used to carry the transmitted signal from one node to the other node. A separate pair is used for the return or received signal. It is possible for signals to pass through both pairs simultaneously. The capability of communication in both directions at once is known as full duplex.

- Doubles bandwidth between nodes
- Collision-free transmission
- Two 10- or 100- Mbps data paths

Layer 4 - The Transport Layer

7 Application

6 Presentation

5 Session
4 Transport
3 Network
2 Data Link
1 Physical
-This layer breaks up the data from the sending host and then reassembles it in the receiver.

DIt also is used to insure reliable data transport across the network. -Can be reliable or unreliable \square Sequencing
-Acknowledgment
\square Retransmission
DFlow Control

PDU - Segments

Layer 3 - The Network Layer

7 Application

6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
PDU - Packets - IP/IPX

1 Physical

Layer 2 - The Data Link Layer

7 Application

6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical
\square Performs Physical Addressing
-This layer provides reliable transit of data across a physical link. aCombines bits into bytes and bytes into frames
DAccess to media using MAC address
DError detection, not correction -LLC and MAC
-Logical Link Control performs Link establishment
-MAC Performs Access method

PDU - Frames

Preamble	DMAC	SMAC	Data length	DATA	FCS

Layer 1 - The Physical Layer

7 Application

6 Presentation

5 Session

4 Transport
3 Network
2 Data Link
1 Physical
\square This is the physical media through which the data, represented as electronic signals, is sent from the source host to the destination host.
-Move bits between devices
-Encoding
PDU - Bits

Data Encapsulation

Data Encapsulation

Bit 1011011100011110000

OSI Model Analogy Application Layer - Source Host

After riding your new bicycle a few times in Hyderabad, you decide that you want to give it to a friend who lives in DADAR, Mumbai.

OSI Model Analogy
 Presentation Layer - Source Host

Make sure you have the proper directions to disassemble and reassemble the bicycle.

OSI Model Analogy Session Layer - Source Host

Call your friend and make sure you have his correct address.

OSI Model Analogy Transport Layer - Source Host

Disassemble the bicycle and put different pieces in different boxes. The boxes are labeled "1 of 3 ", "2 of 3 ", and " 3 of 3 ".

OSI Model Analogy Network Layer - Source Host

Put your friend's complete mailing address (and yours) on each box.Since the packages are too big for your mailbox (and since you don't have enough stamps) you determine that you need to go to the post office.

OSI Model Analogy
 Data Link Layer - Source Host

Hyderabad post office takes possession of the boxes.

OSI Model Analogy Physical Layer - Media

The boxes are flown from Hyderabad to Mumbai.

OSI Model Analogy Data Link Layer - Destination

Dadar post office receives your boxes.

OSI Model Analogy Network Layer - Destination

Upon examining the destination address, Dadar post office determines that your boxes should be delivered to your written home address.

OSI Model Analogy Transport Layer - Destination

Your friend calls you and tells you he got all 3 boxes and he is having another friend named BOB reassemble the bicycle.

OSI Model Analogy Session Layer - Destination

Your friend hangs up because he is done talking to you.

OSI Model Analogy Presentation Layer - Destination

BOB is finished and "presents" the bicycle to your friend. Another way to say it is that your friend is finally getting him "present".

OSI Model Analogy Application Layer - Destination

Your friend enjoys riding his new bicycle in Dadar.

Data Flow Through a Network

Data flow in a network focuses on layers one, two and three of the OSI model. This is after being transmitted by the sending host and before arriving at the receiving host.

Type of Transmission

UUnicast
DMulticast
DBroadcast

Type of Transmission

Broadcast Domain

-A group of devices receiving broadcast frames initiating from any device within the group

QRouters do not forward broadcast frames, broadcast domains are not forwarded from one broadcast to another.

Collision

\square The effect of two nodes sending transmissions simultaneously in Ethernet. When they meet on the physical media, the frames from each node collide and are damaged.

Collision Domain

\square The network area in Ethernet over which frames that have collided will be detected.
\square Collisions are propagated by hubs and repeaters
\square Collisions are Not propagated by switches, routers, or bridges

Physical Layer

Defines

Media type
Connector type
Signaling type

802.3 is responsible for LANs based on the carrier sense multiple access collision detect (CSMA/CD) access methodology. Ethernet is an example of a CSMA/CD network.

Physical Layer: Ethernet/802.3

Device Used At Layer 1

- All devices are in the same collision domain.
- All devices are in the same broadcast domain.
- Devices share the same bandwidth.

Hubs \& Collision Domains

- More end stations means more collisions. CSMA/CD is used.

Layer 2

MAC Layer-802.3

synchronize senders and receivers

Devices On Layer 2 (Switches \& Bridges)

OR

Each segment has its own collision domain. All segments are in the same broadcast domain.

Switches

- Each segment is its own collision domain.
- Broadcasts are forwarded to all segments.

Layer 3 : Network Layer

Defines logical source and destination addresses associated with a specific protocol
Defines paths through network

Layer 3 : (cont.)

Network Layer End-Station Packet

\section*{| IP Header | Source | Destination |
| :--- | :--- | :--- |
 Address Address
 Data}

Logical Address

QRoute determination occurs at this layer, so a packet must include a source and destination address.
aNetwork-layer addresses have two components: a network component for internetwork routing, and a node number for a device-specific address. The example in the figure is an example of an IP packet and address.

Layer 3 (cont.)

Address Mask

172.16.122.204 255.255.0.0

	172	16	122	204
Binary Address	10101100	00010000	01111010	11001100
Binary Mask	255	255	0	0
	11111111	11111111	00000000	00000000
	Network			

Device On Layer 3 Router

- Broadcast control
- Multicast control
- Optimal path determination
- Traffic management
- Logical addressing
- Connects to WAN services

Layer 4 : Transport Layer

Distinguishes between
upper-layer applications
Establishes end-to-end connectivity between applications

Defines flow control

- Provides reliable or unreliable services for data transfer

	TCP	UDP	SPX
$\begin{aligned} & \underline{y} \\ & \vdots \\ & \frac{0}{3} \\ & \frac{0}{2} \end{aligned}$			IPX

Reliable Service

Acknowledge, Synchronize

Data Transfer
(Send Segments)

How They Operate

Switch
Router

Collision Domains:

4
4
Broadcast Domains:
1
1
1
4

Why Another Model?

Although the OSI reference model is universally recognized, the historical and technical open standard of the Internet is Transmission Control Protocol / Internet Protocol (TCP/IP).

The TCP/IP reference model and the TCP/IP protocol stack make data communication possible between any two computers, anywhere in the world, at nearly the speed of light.

The U.S. Department of Defense (DoD) created the TCP/IP reference model because it wanted a network that could survive any conditions, even a nuclear war.

TCP/IP Protocol Stack

Application Layer Overview

Transport Layer Overview

TCP Segment Format

Port Numbers

TCP Port Numbers

TCP Port Numbers

TCP Three-Way Handshake/Open Connection

1 Send SYN

1. $($ seq $=100 \mathrm{ctl}=\mathrm{SYN})$

SYN Received
3 Established
(seq = 101 ack = 301 $\mathrm{ctl}=\mathrm{ack})$

SYN Received
Send SYN, ACK 2 (seq = 300 ack $=101$ $\mathrm{ctl}=\operatorname{syn}, \mathrm{ack})$

Opening \& Closing Connection

Windowing

- Windowing in networking means the quantity of data segments which is measured in bytes that a machine can transmit/send on the network without receiving an acknowledgement

TCP Simple Acknowledgment

Sender

TCP Sequence and Acknowledgment Numbers

Source Destination Sequence Acknowledgment Port Port

1028	23	10	100

Source Dest. Seq. Ack.

23	1028	100	11

Source Dest. Seq. Ack.

1028	23	11	101

Source Dest. Seq. Ack.

23	1028	101	12	87

Windowing

> There are two window sizes-one set to 1 and one set to 3.
> When you've configured a window size of 1 , the sending machine waits for an acknowledgment for each data segment it transmits before transmitting another
> If you've configured a window size of 3, it's allowed to transmit three data segments before an acknowledgment is received.

Windowing

Transport Layer Reliable Delivery

Flow Control

\square Another function of the transport layer is to provide optional flow control.
\square Flow control is used to ensure that networking devices don't send too much information to the destination, overflowing its receiving buffer space, and causing it to drop the sent information

The purpose of flow control is to ensure the destination doesn't get overrun by too much information sent by the source

Flow Control

User Datagram Protocol (UDP)

User Datagram Protocol (UDP) is the connectionless transport protocol in the TCP/IP protocol stack.

UDP is a simple protocol that exchanges datagrams, without acknowledgments or guaranteed delivery. Error processing and retransmission must be handled by higher layer protocols.

UDP is designed for applications that do not need to put sequences of segments together.

The protocols that use UDP include:

- TFTP (Trivial File Transfer Protocol)

SNMP (Simple Network Management Protocol)
DHCP (Dynamic Host Control Protocol)
DNS (Domain Name System)

UDP Segment Format

	Bit 15 0 Bit 16		Bit 31
Source Port (16) Destination Port (16) Length (16) Checksum (16) Data (if Any)			

- No sequence or acknowledgment fields

TCP vs UDP

TCP	UDP
Sequenced	Unsequenced
Reliable	Unreliable
Connection-oriented	Connectionless
Virtual circuit	Low overhead
Acknowledgments	No acknowledgment
Windowing flow control	No windowing or flow control

Internet Layer Overview

- In the OSI reference model, the network layer corresponds to the TCP/IP Internet layer.

IP Datagram

Bit 0
Bit 15 Bit 16
Bit 31

Version (4)	Header Length (4)	Priority \&Type of Service (8)	Total Length (16)	
Identification (16)			Flags (3)	Fragment Offset (13)
Time-to-Live (8)	Protocol (8)	Header Checksum (16)		

Source IP Address (32)
Destination IP Address (32)
Options (0 or 32 if Any)

Data (Varies if Any)

Protocol Field

- Determines destination upper-layer protocol

Internet Control Message Protocol

Address Resolution Protocol

- Map IP MAC
- Local ARP

Reverse ARP

Origin of Ethernet

DFound by Xerox Palo Alto Research Center (PARC) in 1975

DOriginal designed as a 2.94 Mbps system to connect 100 computers on a 1 km cable
DLater, Xerox, Intel and DEC drew up a standard support 10 Mbps - Ethernet II
-Basis for the IEEE's 802.3 specification

- Most widely used LAN technology in the world

10 Mbps IEEE Standards - 10BaseT

- 10BaseT $\Rightarrow 10 \mathrm{Mbps}$, baseband, over Twisted-pair cable
- Running Ethernet over twisted-pair wiring as specified by IEEE 802.3
- Configure in a star pattern
- Twisting the wires reduces EMI
- Fiber Optic has no EMI

Unshielded twisted-pair

RJ-45 Plug and Socket

Twisted Pair Cables

- Unshielded Twisted Pair Cable (UTP)

Dmost popular
Dmaximum length 100 m
Dprone to noise
Category 1 Voice transmission of traditional telephone Category 2 For data up to 4 Mbps , 4 pairs full-duplex
Category 3 For data up to 10 Mbps , 4 pairs full-duplex
Category 4 For data up to 16 Mbps , 4 pairs full-duplex
Category 5 For data up to $100 \mathrm{Mbps}, 4$ pairs full-duplex
Category 6 For data up to $1000 \mathrm{Mbps}, 4$ pairs full-duplex

Baseband VS Broadband

\square Baseband Transmission

* Entire channel is used to transmit a single digital signal
* Complete bandwidth of the cable is used by a single signal
* The transmission distance is shorter
* The electrical interference is lower
\square Broadband Transmission
* Use analog signaling and a range of frequencies
* Continuous signals flow in the form of waves
* Support multiple analog transmission (channels)

Straight-through cable

Straight-through cable pinout

Pin $1 \boldsymbol{- \boldsymbol { m }} \boldsymbol{-}=\operatorname{Pin} 1$108

Crossover cable

Crossover cable

From	To
1	3
2	6
3	1
4	none
5	none
6	2
7	none
8	none

Rollover cable

Device with Console

RJ-45-to-RJ-45 Rollover Cable

RJ-45-to-DB-9 Adapter labeled TERMINAL

- PCs require an RJ-45 to DB-9 or RJ-45 to DB-25 adapter.
- COM port settings are $9600 \mathrm{bps}, 8$ data bits, no parity, 1 stop bit, no flow control.
- This provides out-of-band console access.
- AUX switch port may be used for a modem-connected console.

Rollover cable pinout

Straight-Thru or Crossover

-Use straight-through cables for the following cabling:
\square Switch to router
\square Switch to PC or server
\square Hub to PC or server
-Use crossover cables for the following cabling:
\square Switch to switch
Switch to hub

- Hub to hub

Router to router

- PC to PC
\square Router to PC

Haiu

Decimal to Binary

172 - Base 10

172

10101100

Base 2 Number System

$$
\begin{aligned}
10110_{2}= & \left(1 \times 2^{4}=16\right)+\left(0 \times 2^{3}=0\right)+\left(1 \times 2^{2}=4\right)+ \\
& \left(1 \times 2^{1}=2\right)+\left(0 \times 2^{0}=0\right)=22
\end{aligned}
$$

Place Value	$\frac{128}{128} \frac{64}{32} \frac{16}{16} \frac{8}{4} \frac{2}{2} \frac{1}{1}$
Base Exponent	$2^{7}=128$
$2^{6}=64$	$2^{3}=8$
	$2^{5}=32$
$2^{2}=4$	
	$2^{4}=16$
$2^{1}=2$	
Number of Symbols	2
Symbols	0,1
Rationale	Two-state (discrete binary) voltage systems made from transistors can be diverse, powerful, inexpensive, tiny and relatively immune to noise.

Converting Decimal to Binary

Convert $\mathbf{2 0 1}_{10}$ to binary:

$201 / 2$	$=100$ remainder $\mathbf{1}$
$100 / 2=50$ remainder $\mathbf{0}$	
$50 / 2=25$ remainder $\mathbf{0}$	
$25 / 2=12$ remainder $\mathbf{1}$	
$12 / 2=6$ remainder $\mathbf{0}$	
$6 / 2=3$ remainder $\mathbf{0}$	
$3 / 2=1$ remainder $\mathbf{1}$	
$1 / 2=0$ remainder $\mathbf{1}$	

When the quotient is 0 , take all the remainders in reverse order for your answer: $\mathbf{2 0 1}_{10}=\mathbf{1 1 0 0 1 0 0 1}_{2}$

Binary to Decimal Chart

Binary Value	Decimal Value
10000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	254
11111111	255

Hex to Binary to Decimal Chart

Hexadecimal Value	Binary Value	Decimal Value
O	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	6
6	0110	7
7	0111	8
B	1000	9
A	1001	10
B	1010	11
E	1011	1100
F	1101	15

Introduction to TCP/IP Addresses

- Unique addressing allows communication between end stations.
- Path choice is based on destination address.

IP Addressing

IP Address Classes

-Class A:
8 Bits 8 Bits 8 Bits 8 Bits
-Class B:

Network	Host	Host	Host

-Class C:

Network	Network	Network	Host

-Class D: Multicast
-Class E: Research

IP Address Classes

Bits:
Class A:

8 9	1617		2425	
1	ONNNNNNN	Host	Host	Host

Range (1-126)

Host Addresses

Classless Inter-Domain Routing

 (CIDR)- Basically the method that ISPs (Internet Service Providers) use to allocate an amount of addresses to a company, a home
- Ex : 192.168.10.32/28
- The slash notation (/) means how many bits are turned on (1s)

CIDR Values

Subnet Mask

255.0.0.0 /8
255.128.0.0 /9
255.192.0.0 /10
255.224.0.0 /11
255.240.0.0 /12

Determining Available Host

 Addresses

IP Address Classes Exercise

Address	Class	Network
10.2 .1 .1		
128.63.2.100		
201.222.5.64		
192.6.141.2		
130.113.64.16		
256.241 .201 .10		

IP Address Classes Exercise

Answers

Address			
10.2 .1 .1	A	Network	Host
128.63 .2 .100	B	128.03 .0 .0	0.2 .1 .1
201.222 .5 .64	C	201.222 .5 .0	0.0 .0 .0 .64
192.6 .141 .2	C	192.6 .141 .0	0.0 .0 .2
130.113 .64 .16	B	130.113 .0 .0	0.0 .64 .16
256.241 .201 .10	Nonexistent		

Subnetting

\square Subnetting is logically dividing the network by extending the 1's used in SNM
-Advantage
aCan divide network in smaller parts
DRestrict Broadcast traffic
aSecurity
DSimplified Administration

Formula

\square Number of subnets - $2^{\mathrm{x}}-2$
Where $X=$ number of bits borrowed
\square Number of Hosts - $2 \mathrm{y}-2$
Where $\mathrm{y}=$ number of 0 's
\square Block Size $=$ Total number of Address Block Size $=256$-Mask

Subnetting

- Classful IP Addressing SNM are a set of 255's and 0's.
\square In Binary it's contiguous 1's and 0's.
\square SNM cannot be any value as it won't follow the rule of contiguous 1's and 0's.
\square Possible subnet mask values
- 0
- 128
- 192
- 224
- 240
- 248
- 252
- 254
- 255

Addressing Without Subnets

- Network 172.16.0.0

Addressing with Subnets

Subnet Addressing

Subnet Addressing

| 172.16 | | 2 | | 160
Network Subnet Host

New Routing Table Network	
Interface	
172.16.2.0	E0
172.16.3.0	E1

Subnet Mask

Also written as "/16," where 16 represents the number of 1 s in the mask

Also written as "/24," where 24 represents the number of 1s in the mask

Decimal Equivalents of Bit Patterns

128	64	32	16	8	4	2	1	
$!$	$!$	$!$	$!$	$!$	$!$	$!$	$!$	
0	0	0	0	0	0	0	0	$=0$
1	0	0	0	0	0	0	0	$=128$
1	1	0	0	0	0	0	0	$=192$
1	1	1	0	0	0	0	0	$=224$
1	1	1	1	0	0	0	0	$=240$
1	1	1	1	1	0	0	0	$=248$
1	1	1	1	1	1	0	0	$=252$
1	1	1	1	1	1	1	0	$=254$
1	1	1	1	1	1	1	1	$=255$

Subnet Mask Without Subnets

	Network		Host	
172.16 .2 .160	10101100	00010000	00000010	10100000
255.255 .0 .0	11111111	11111111	00000000	00000000
	10101100	00010000	00000000	00000000
	172	16	0	0

- Subnets not in use-the default

Subnet Mask with Subnets

- Network number extended by eight bits

Subnet Mask with Subnets

Network

10101100	00010000	00000010	10	$\begin{aligned} & 100000 \\ & 000000 \end{aligned}$
11111111	11111111	11111111	11	
10101100	00010000	00000010	10	000000
				Noన్న్రి

Network
 Number

172	16	2	128

- Network number extended by ten bits

Subnet Mask Exercise

Address	Subnet Mask	Class	Subnet
172.16 .2 .10	255.255 .255 .0		
10.6 .24 .20	255.255 .240 .0		
10.30 .36 .12	255.255 .255 .0		

Subnet Mask Exercise Answers

Address			
Subnet Mask	Class	Subnet	
172.16 .2 .10	255.255 .255 .0	B	172.16 .2 .0
10.6 .24 .20	255.255 .240 .0	A	10.6 .16 .0
10.30 .36 .12	255.255 .255 .0	A	10.30 .36 .0

Broadcast Addresses

255.255.255.255 $\longrightarrow X$
(Local Network Broadcast)
172.16.255.255
(All Subnets Broadcast)

Addressing Summary Example

172	16	2	160

172.16.2.160
255.255.255.192

9
172.16.2.128
172.16.2.191
172.16.2.129
172.16.2.190

10101100000100000000001010000000 Subnet 4 10101100000100000000001010111111 Broadcast 10101100000100000000001010000001 First 6 10101100000100000000001010111110 Last ${ }_{145}^{7}$

Class B Subnet Example

IP:Host Address: 172.16.2.121

Subnet Mask: 255.255.255.0

	Network	Network	Subnet	Host
172.16.2.121:	10101100	00010000	00000010	01111001
$255.255 .255 .0:$	11111111	11111111	11111111	00000000
Subnet:	10101100	00010000	00000010	00000000
Broadcast:	10101100	00010000	00000010	11111111

- Subnet Address = 172.16.2.0
- Host Addresses = 172.16.2.1-172.16.2.254
- Broadcast Address = 172.16.2.255
- Eight Bits of Subnetting

Subnet Planning

Class C Subnet Planning Example

IP Host Address: 192.168.5.121
Subnet Mask: 255.255.255.248

	Network	Network	Network	Subnet	Host
192.168.5.121:	11000000	10101000	00000101	01111001	
$255.255 .255 .248:$	11111111	11111111	11111111	11111000	
Subnet:	11000000	10101000	00000101	01111000	
Broadcast:	11000000	10101000	00000101	01111111	

- Subnet Address $=$ 192.168.5.120
- Host Addresses = 192.168.5.121-192.168.5.126
- Broadcast Address = 192.168.5.127
- Five Bits of Subnetting

Exercise

- 192.168.10.0
- /27

? - SNM ? - Block Size ?- Subnets

Exercise

- /27
? - SNM - 224
? - Block Size = 256-224 = 32
?- Subnets

Subnets	10.0	10.32	10.64
FHID	10.1	10.33	
LHID	10.30	10.62	
Broadcast	10.31	10.63	

Exercise

- 192.168.10.0
- /30

? - SNM ? - Block Size ?- Subnets

Exercise

-/30

? - SNM - 252
 ? - Block Size = 256-252 = 4
 ?- Subnets

Subnets	10.0	10.4	10.8
FHID	10.1	10.5	
LHID	10.2	10.6	
Broadcast	10.3	10.7	

Exercise

	Mask	Subnets	Host
$/ 26$	$?$	$?$	$?$
$/ 27$	$?$	$?$	$?$
$/ 28$	$?$	$?$	$?$
$/ 29$	$?$	$?$	$?$
$/ 30$	$?$	$?$	$?$

Exercise

	Mask	Subnets	Host
$/ 26$	192	4	62
$/ 27$	224	8	30
$/ 28$	240	16	14
$/ 29$	248	32	6
$/ 30$	252	64	2

Exam Question

- Find Subnet and Broadcast address
- 192.168.0.100/27

Exercise

-192.168.10.54 / 29
DMask ?
DSubnet ?
-Broadcast?

Exercise

$\square 192.168 .10 .130 / 28$
口Mask ?

- Subnet?

DBroadcast?

Exercise

-192.168.10.193/30
DMask ?
QSubnet?
DBroadcast ?

Exercise

口192.168.1.100 /26
DMask ?
-Subnet ?
DBroadcast?

Exercise

-192.168.20.158/27
DMask ?
QSubnet ?
DBroadcast ?

Class B

172.16.0.0 / 19

Subnets?
Hosts ?
Block Size ?

Class B

172.16.0.0 /19

Subnets $2^{3}-2=6$
Hosts $2^{13}-2=8190$
Block Size 256-224 = 32

Subnets	0.0	32.0	64.0	96.0
FHID	0.1	32.1	64.1	96.1
LHID	31.254	63.254	95.254	127.254
Broadcast	31.255	63.255	95.255	127.255

Class B

172.16.0.0/27

Subnets?
Hosts ?
Block Size ?

Class B

172.16.0.0 /27

Subnets $2^{11}-2=2046$ Hosts $2^{5}-2=30$
Block Size 256-224 = 32

Subnets	0.0	0.32	0.64	0.96
FHID	0.1	0.33	0.65	0.97
LHID	0.30	0.62	0.94	0.126
Broadcast	0.31	0.63	0.95	0.127

Class B

172.16.0.0/23

Subnets?
Hosts ?
Block Size ?

Class B

172.16.0.0 /23

Subnets $2^{7}-2=126$
Hosts $2^{9}-2=510$
Block Size 256-254 = 2

Subnets	0.0	2.0	4.0	6.0
FHID	0.1	2.1	4.1	6.1
LHID	1.254	3.254	5.254	7.254
Broadcast	1.255	3.255	5.255	7.255

Class B

172.16.0.0/24

Subnets?
Hosts ?
Block Size ?

Class B

172.16.0.0/24

Subnets $2^{8}-2=254$
Hosts $2^{8}-2=254$
Block Size 256-255 = 1

Subnets	0.0	1.0	2.0	3.0
FHID	0.1	1.1	2.1	3.1
LHID	0.254	1.254	2.254	3.254
Broadcast	0.255	1.255	2.255	3.255

Class B

172.16.0.0/25

Subnets?
Hosts ?
Block Size ?

Class B

172.16.0.0/25

Subnets $2^{9}-2=510$
Hosts 27-2 = 126
Block Size 256-128 = 128

Subnets	0.0	0.128	1.0	1.128	2.0	2.128
FHID	0.1	0.129	1.1	1.129	2.1	2.129
LHID	0.126	0.254	1.126	1.254	2.126	2.254
Broadcast	0.127	0.255	1.127	1.255	2.127	2.255

Find out Subnet and Broadcast

 Address- 172.16.85.30/29

Find out Subnet and Broadcast

 Address-172.30.101.62/23

Find out Subnet and Broadcast

Address

- 172.20.210.80/24

Exercise

- Find out the mask which gives 100 subnets for class B

Exercise

- Find out the Mask which gives 100 hosts for Class B

Class A

10.0.0.0 / 10

Subnets?
Hosts ?
Block Size ?

Class A

10.0.0.0 / 10

Subnets $2^{2}-2=2$
Hosts $2^{22}-2=4194302$
Block Size 256-192 = 64

Subnets	10.0	10.64	10.128	10.192
FHID	10.0 .0 .1	10.64 .0 .1	10.128 .0 .1	10.192 .0 .1
LHID	10.63 .255 .254	10.127 .255 .254	10.191 .255 .254	10.254 .255 .254
Broadcast	10.63 .255 .255	10.127 .255 .255	10.191 .255 .255	10.254 .255 .255

Class A

10.0.0.0 / 18

Subnets?
Hosts ?
Block Size ?

Class A

10.0.0.0 / 18

Subnets $2^{10}-2=1022$
Hosts $2^{14}-2=16382$
Block Size 256-192 = 64

Subnets	10.0 .0 .0	10.0 .64 .0	10.0 .128 .0	10.0 .192 .0
FHID	10.0 .0 .1	10.0 .64 .1	10.0 .128 .1	10.0 .192 .1
LHID	10.0 .63 .254	10.0 .127 .254	10.0 .191 .254	10.0 .254 .254
Broadcast	10.0 .63 .255	10.0 .127 .255	10.0 .191 .255	10.0 .254 .255

Broadcast Addresses Exercise

Address	Subnet Mask	Class	Subnet
201.222 .10 .60	$\mathbf{2 5 5 . 2 5 5 . 2 5 5 . 2 4 8}$		
15.16 .193 .6	$\mathbf{2 5 5 . 2 5 5 . 2 4 8 . 0}$		
128.16 .32 .13	$\mathbf{2 5 5 . 2 5 5 . 2 5 5 . 2 5 2}$		
153.50 .6 .27	$\mathbf{2 5 5 . 2 5 5 . 2 5 5 . 1 2 8}$		

Broadcast Addresses Exercise Answers

Address	Subnet Mask					Class		Subnet	Broadcast
201.222 .10 .60	$\mathbf{2 5 5 . 2 5 5 . 2 5 5 . 2 4 8}$	C	$\mathbf{2 0 1 . 2 2 2 . 1 0 . 5 6}$	$\mathbf{2 0 1 . 2 2 2 . 1 0 . 6 3}$					
15.16 .193 .6	255.255 .248 .0	A	$\mathbf{1 5 . 1 6 . 1 9 2 . 0}$	$\mathbf{1 5 . 1 6 . 1 9 9 . 2 5 5}$					
128.16 .32 .13	$\mathbf{2 5 5 . 2 5 5 . 2 5 5 . 2 5 2}$	B	128.16 .32 .12	128.16 .32 .15					
153.50 .6 .27	$\mathbf{2 5 5 . 2 5 5 . 2 5 5 . 1 2 8}$	B	153.50 .6 .0	153.50 .6 .127					

VLSM

- VLSM is a method of designating a different subnet mask for the same network number on different subnets
- Can use a long mask on networks with few hosts and a shorter mask on subnets with many hosts
- With VLSMs we can have different subnet masks for different subnets.

Variable Length Subnetting

> VLSM allows us to use one class C address to design a networking scheme to meet the following requirements:
> Bangalore
60 Hosts
$>$ Mumbai
$>$ Sydney
$>$ Singapore

- WAN 1
$>$ WAN 2
$>$ WAN 3

28 Hosts
12 Hosts
12 Hosts
2 Hosts
2 Hosts
2 Hosts

Networking Requirements

Mumbai 60
Sydney 60
Singapore 60
IIn the example above, a/26 was used to provide the $\mathbf{6 0}$ addresses for Bangalore and the other LANs. There are no addresses left for WAN links

Networking Scheme

Mumbai 192.168.10.64/27

Singapore 192.168.10.112/28

VLSM Exercise

192.168.1.0

VLSM Exercise

192.168.1.0

VLSM Exercise

192.168.1.0

Summarization

- Summarization, also called route aggregation, allows routing protocols to advertise many networks as one address.
- The purpose of this is to reduce the size of routing tables on routers to save memory
- Route summarization (also called route aggregation or supernetting) can reduce the number of routes that a router must maintain
- Route summarization is possible only when a proper addressing plan is in place
- Route summarization is most effective within a subnetted environment when the network addresses are in contiguous blocks

Summarization

Supernetting

Network Network Network Subnet

172.16 .13 .0	11000000	1010100000001101	00000000

172.16.14.0 11000000101010000000111000000000
172.16.15.0 11000000101010000000111100000000
$255.255 .255 .011111111 \quad 111111111111111100000000$

Supernetting

Network Network Network Subnet
172.16.12.0 11000000101010000000110000000000
172.16.13.0 110000001010100000001101
172.16.14.0 110000001010100000001110
172.16.15.0 11000000 1010100000001111 00000000
$255.255 .252 .011111111 \quad 111111111111110000000000$

Supernetting Question

- What is the most efficient summarization that TK1 can use to advertise its networks to TK2?
A. 172.1.4.0/24172.1.5.0/24172.1.6.0/24172.1.7.0/24
B. 172.1.0.0/22
C. 172.1.4.0/25172.1.4.128/25172.1.5.0/24172.1.6.0/24172.1.7.0/24
D. 172.1.0.0/21
E. 172.1.4.0/22

